BRCA2 affects the efficiency of DNA double-strand break repair in response to N-nitroso compounds with differing carcinogenic potentials
نویسندگان
چکیده
The tumor suppressor gene breast cancer susceptibility gene 2 (BRCA2) is frequently mutated or epigenetically repressed in human cancer and has a significant role in the homologous recombination (HR) of DNA double-strand breaks (DSBs). Although N-nitrosodiethylamine (NDEA), N-nitrosodiethanolamine (NDELA) and N-nitrosodipropylamine (NDPA) have similar chemical structures and are able to induce DNA damage, they have varying carcinogenic risks. We hypothesized that the DNA damage repair pathways that are induced by these N-nitroso compounds (NOCs) may differ and that this may contribute to the genotoxic-carcinogenic effect of the NOCs. The present study aimed to characterize the formation of DSBs by NDEA, NDELA and NDPA and also to investigate whether BRCA2 is involved in the DNA damage response. The NOCs were observed to time-dependently induce DSBs and the expression of γ-H2AX in gastric cancer SGC7901 cells. It was observed that the DNA damage induced by NDEA, the most potent carcinogen, was not repaired as efficiently as that caused by NDELA or NDPA. The expression of BRCA2 and RAD51 was demonstrated to be inhibited by NDEA treatment but upregulated by NDELA or NDPA treatment. Furthermore, the knock down of BRCA2 expression impaired the DNA damage repair induced by NDELA or NDPA. The cells with this knock down exhibited an increased sensitivity to NDELA or NDPA treatment, but not to NDEA. These findings suggest that a BRCA2-mediated pathway contributes to differential DSB repair and sensitivity in response to NOC exposure and that it may be associated with the genotoxic-carcinogenic potential of NOCs.
منابع مشابه
The study of dose gamma rays of 192Ir source on DNA single strand break (SSB) and DNA double strand break (DSB) in soft tissue phantom
Introduction: Passage of ionizing radiation through the organs of living creatures develops clusters of damaged nucleotides inside the DNA rounds. 192Ir Gamma source is one of the most widely used sources in brachytherapy of cervical and prostate cancer. Thus, in this research, we investigated the flux of photons and its resulting secondary electrons, the single-strand break (S...
متن کاملMicrocephalin regulates BRCA2 and Rad51-associated DNA double-strand break repair.
Microcephalin (MCPH1) is a BRCA1 COOH terminal (BRCT) domain containing protein involved in the cellular response to DNA damage that has been implicated in autosomal recessive primary microcephaly. MCPH1 is recruited to sites of DNA double-strand breaks by phosphorylated histone H2AX (gammaH2AX), but the mechanism by which MCPH1 contributes to the repair process remains to be determined. Here, ...
متن کاملHomologous recombination repair signaling in chemical carcinogenesis: prolonged particulate hexavalent chromium exposure suppresses the Rad51 response in human lung cells.
The aim of this study was to focus on hexavalent chromium, [Cr(VI)], a chemical carcinogen and major public health concern, and consider its ability to impact DNA double strand break repair. We further focused on particulate Cr(VI), because it is the more potent carcinogenic form of Cr(VI). DNA double strand break repair serves to protect cells against the detrimental effects of DNA double stra...
متن کاملValproic Acid-Mediated Reduction of DNA Double-Strand Break Reparation Capacity of Irradiated MCF-7 Cells
Introduction H istone deacetylase inhibitors (HDIs), as radiation sensitizing agents, are considered as a novel class of anti-cancer factors, which are studied in various tumor cell-lines. Valproic acid (VPA) is an HDI, which is effectively used in the treatment of epilepsy, migraines, and some particular types of depression. In this study, we evaluated the effects of VPA and ionizing radiatio...
متن کاملPALB2 self-interaction controls homologous recombination
PALB2 is essential for BRCA2 anchorage to nuclear structures and for homologous recombinational repair of DNA double-strand breaks. Here, we report that the N-terminal coiled-coil motif of PALB2 regulates its self-association and homologous recombination. Monomeric PALB2 shows higher efficiency to bind DNA and promotes RAD51 filament formation with or without the inhibitory effect of Replicatio...
متن کامل